388 research outputs found

    Option pricing under fast-varying long-memory stochastic volatility

    Full text link
    Recent empirical studies suggest that the volatility of an underlying price process may have correlations that decay slowly under certain market conditions. In this paper, the volatility is modeled as a stationary process with long-range correlation properties in order to capture such a situation, and we consider European option pricing. This means that the volatility process is neither a Markov process nor a martingale. However, by exploiting the fact that the price process is still a semimartingale and accordingly using the martingale method, we can obtain an analytical expression for the option price in the regime where the volatility process is fast mean-reverting. The volatility process is modeled as a smooth and bounded function of a fractional Ornstein-Uhlenbeck process. We give the expression for the implied volatility, which has a fractional term structure

    Role of scattering in virtual source array imaging

    Full text link
    We consider imaging in a scattering medium where the illumination goes through this medium but there is also an auxiliary, passive receiver array that is near the object to be imaged. Instead of imaging with the source-receiver array on the far side of the object we image with the data of the passive array on the near side of the object. The imaging is done with travel time migration using the cross correlations of the passive array data. We showed in [J. Garnier and G. Papanicolaou, Inverse Problems {28} (2012), 075002] that if (i) the source array is infinite, (ii) the scattering medium is modeled by either an isotropic random medium in the paraxial regime or a randomly layered medium, and (iii) the medium between the auxiliary array and the object to be imaged is homogeneous, then imaging with cross correlations completely eliminates the effects of the random medium. It is as if we imaged with an active array, instead of a passive one, near the object. The purpose of this paper is to analyze the resolution of the image when both the source array and the passive receiver array are finite. We show with a detailed analysis that for isotropic random media in the paraxial regime, imaging not only is not affected by the inhomogeneities but the resolution can in fact be enhanced. This is because the random medium can increase the diversity of the illumination. We also show analytically that this will not happen in a randomly layered medium, and there may be some loss of resolution in this case.Comment: 22 pages, 4 figure

    Coupled paraxial wave equations in random media in the white-noise regime

    Full text link
    In this paper the reflection and transmission of waves by a three-dimensional random medium are studied in a white-noise and paraxial regime. The limit system derives from the acoustic wave equations and is described by a coupled system of random Schr\"{o}dinger equations driven by a Brownian field whose covariance is determined by the two-point statistics of the fluctuations of the random medium. For the reflected and transmitted fields the associated Wigner distributions and the autocorrelation functions are determined by a closed system of transport equations. The Wigner distribution is then used to describe the enhanced backscattering phenomenon for the reflected field.Comment: Published in at http://dx.doi.org/10.1214/08-AAP543 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Correction to Black-Scholes formula due to fractional stochastic volatility

    Full text link
    Empirical studies show that the volatility may exhibit correlations that decay as a fractional power of the time offset. The paper presents a rigorous analysis for the case when the stationary stochastic volatility model is constructed in terms of a fractional Ornstein Uhlenbeck process to have such correlations. It is shown how the associated implied volatility has a term structure that is a function of maturity to a fractional power

    Option Pricing under Fast-varying and Rough Stochastic Volatility

    Full text link
    Recent empirical studies suggest that the volatilities associated with financial time series exhibit short-range correlations. This entails that the volatility process is very rough and its autocorrelation exhibits sharp decay at the origin. Another classic stylistic feature often assumed for the volatility is that it is mean reverting. In this paper it is shown that the price impact of a rapidly mean reverting rough volatility model coincides with that associated with fast mean reverting Markov stochastic volatility models. This reconciles the empirical observation of rough volatility paths with the good fit of the implied volatility surface to models of fast mean reverting Markov volatilities. Moreover, the result conforms with recent numerical results regarding rough stochastic volatility models. It extends the scope of models for which the asymptotic results of fast mean reverting Markov volatilities are valid. The paper concludes with a general discussion of fractional volatility asymptotics and their interrelation. The regimes discussed there include fast and slow volatility factors with strong or small volatility fluctuations and with the limits not commuting in general. The notion of a characteristic term structure exponent is introduced, this exponent governs the implied volatility term structure in the various asymptotic regimes.Comment: arXiv admin note: text overlap with arXiv:1604.0010

    Regularity dependence of the rate of convergence of the learning curve for Gaussian process regression

    Get PDF
    This paper deals with the speed of convergence of the learning curve in a Gaussian process regression framework. The learning curve describes the average generalization error of the Gaussian process used for the regression. More specifically, it is defined in this paper as the integral of the mean squared error over the input parameter space with respect to the probability measure of the input parameters. The main result is the proof of a theorem giving the mean squared error in function of the number of observations for a large class of kernels and for any dimension when the number of observations is large. From this result, we can deduce the asymptotic behavior of the generalization error. The presented proof generalizes previous ones that were limited to more specific kernels or to small dimensions (one or two). The result can be used to build an optimal strategy for resources allocation. This strategy is applied successfully to a nuclear safety problem

    Genealogical particle analysis of rare events

    Full text link
    In this paper an original interacting particle system approach is developed for studying Markov chains in rare event regimes. The proposed particle system is theoretically studied through a genealogical tree interpretation of Feynman--Kac path measures. The algorithmic implementation of the particle system is presented. An estimator for the probability of occurrence of a rare event is proposed and its variance is computed, which allows to compare and to optimize different versions of the algorithm. Applications and numerical implementations are discussed. First, we apply the particle system technique to a toy model (a Gaussian random walk), which permits to illustrate the theoretical predictions. Second, we address a physically relevant problem consisting in the estimation of the outage probability due to polarization-mode dispersion in optical fibers.Comment: Published at http://dx.doi.org/10.1214/105051605000000566 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore